Troubleshooting

MAGNALOCKS

DK-11 Specific: Entering the code does not unlock the door.


Note if the red LED on the Keypad Plate goes on after the code is entered. If it does then the system is functioning normally and you need to check the lock and lock wiring. If the LED flashes once quickly the lock is drawing to much current or you power supply is under rated for the system. If the LED does not go on then the code is not being accepted and you need to re-program the system. If this fails call the factory.

DK-26 and DK-16 Specific: This unit appears dead.


Check that power has been connected using a voltmeter on the CPU board to make sure that the correct voltage is present. If the voltage reads very low, the problem may be that a fail safe lock being controlled by the DK-26 is drawing too much current for the power supply. Remove the lock from the circuit. If this restores proper voltage and operation of the DK-26, you'll have to determine if the power supply is undersized or if there is a short circuit in the lock wiring which is pulling down the power supply. If the DK-26 is receiving specified voltage, briefly short terminal SRC to terminal REX. You should hear the relay click. This confirms that the CPU board is working but for some reason, it's not reading the keys. Make sure that the keypad cable is connected exactly as shown in instructions. Pay particular attention to the keypad white wire going into terminal WHT. If this wire is not connected, the keypad will appear to be dead. If the relay doesn't operate when SRC and REX are connected, the CPU board has either tripped one of its automatic fuses or has some major problem requiring replacement. The DK-26 employs three special type fuses called PolySwitches.
PolySwitches look like capacitors. When a PolySwitch goes into overload, it automatically adds a high resistance to the circuit which limits current flow to about 100mA, protecting the circuit. Each PolySwitch protects against a particular problem and you need to know how to determine if the PolySwitch has tripped and how to correct the problem and reset the PolySwitch.
PolySwitch #1 comes into play when you are powering the unit from an AC source connected to the AC input terminals. It protects against an internal short on the board. If you are powering the board with DC voltage into the DC input terminals, ignore PolySwitch #1.
PolySwitch #2 protects against an internal DC short circuit on the CPU board.
PolySwitch #3 protects against a short circuit in the keypad which can be caused by skinned keypad wires or mis-wiring the keypad cable into the CPU board terminals. PolySwitch #3 will also trip if there are short circuit problems with the SRC, REX, UCD and HCD terminals.
To check the PolySwitches, apply the probes of a voltmeter to both PolySwitch leads with the board powered. If you are checking PolySwitch #1, set your voltmeter to AC. Set it to DC for PolySwitches #2 and #3. In the normal condition, the PolySwitch will be conducting current so you will read less than one volt. A tripped PolySwitch acts as a high impedance resistor so you will read several volts across the PolySwitch leads. If none of the three PolySwitches have tripped but the properly powered board will not operate its relay when SRC and REX are briefly shorted together, call the factory.
If you find a tripped PolySwitch, you have reset it. Overload current through the PolySwitch trips it so that it clamps the current down to roughly 100mA. The PolySwitch will continue to clamp until all power is removed for about 5 seconds. It is not enough to correct the overload condition; you have to depower the board for 5 seconds and the PolySwitch will reset itself.
If PolySwitch #1 has tripped, visually inspect the four large diodes on the board to see if a loose wire has fallen on them to create a short circuit. If you do not find such a physical problem that can be easily corrected, the board should be replaced although you should be aware that it can be operated with no problems from a DC power supply connected into the DC input terminals.
If PolySwitch #2 has tripped, and you are using DC power, make sure your input polarity is correct. Reversing your input polarity will trip PolySwitch #2. Otherwise, look for any loose wires that could be creating a short circuit anywhere on the board. If you can't correct the fault that is tripping PolySwitch #2, the board must be replaced.
If PolySwitch #3 has tripped, the overload condition is in the keypad wiring or in terminals SRC, REX, UCD and HCD. Carefully make sure that all keypad wires are connected to the correct terminals. If they are, temporarily disconnect the keypad and attempt to reset PolySwitch #3 by de-powering the board for 5 seconds. Once the board has been re-powered, momentarily connect SRC to REX to see if the board will function (the lock control relay will operate). If the CPU board resumes function, reconnect the keypad. If PolySwitch #3 trips again, the keypad will need to be replaced. If the CPU board did not resume function, disconnect any wires on the SRC, REX, UCD and HCD terminals and attempt reset. If this does not restore function to the board, the board will need to be replaced.

DK-26 and DK-16 Specific: Keys do not operate but I hear a beep every five seconds.


This is a diagnostic feature which indicates that one of the keys is being read as down (always being pressed). In that condition, the CPU board will not be able to read any other keys. It can happen because of mechanical failure within the switch element, or keypad wires that are shorted to each other. The latter problem usually happens when insulation is scraped off some of the wires in the keypad cable as it's being pulled through the door frame. You may be able to restore operation by rapping on all the keys. If this works, however, it is likely only a temporary fix and you should be prepared to change the keypad. Next, check the wiring of the keypad cable into the board. If you don't see any problems, the keypad will need to be replaced but you can restore partial use, if you wish, while awaiting a replacement. Put the positive probe of a voltmeter on terminal WHT and successively apply the negative probe on terminals BLK, GRY, BRN, BGE, ORG, PNK, and VIO. "Good" terminals will read about 11 volts. Two terminals, however, will read about zero volts. Remove the wires from the two terminals which read zero volts. If you are wondering why a single down key does not create a single zero volt terminal read, you should understand that the keys are in a two of seven matrix so the one to one relationship doesn't hold. When you remove the two wires from the zero volt reading terminals, you will disable several keys. You will be able to determine which keys are working by pressing each key and seeing which ones are echoed by a beep and LED flash. You can then establish a temporary Hard code using only the active keys.

DK-26 and DK-16 Specific: The keypad does not beep and the LED does not flash when a key is pressed (no echo).


A key is failing to be read when it is pressed. This can happen because of mechanical failure within the switch element, or from a broken or mis-wired keypad wire. If, however, the problem is with a wire, more than one key will be "dead". If just one key is not being echoed, the problem is with the key itself. You can, of course, use the unit for all operations that don't require that particular key but you will want to replace the keypad for full operation.

DK-26 and DK-16 Specific: Unit won't accept programming.


If the problem occurs on initial installation, usually it's caused by misunderstanding the programming instructions. Read them again carefully. Be sure you're not waiting more than 5 seconds between hitting keys as if you are, the entry will be ignored. Finally note that if terminals SRC and UCD are connected, all User codes will be disabled. If terminals SRC and HCD are connected, the Hard code will be disabled.

DK-26 and DK-16 Specific: The door opens on a short code that wasn't programmed.


This can arise through an unnoticed programming error. Suppose you want to program 4-5-1-2. But when the unit is in program mode, you forget to put in the two digit memory slot prefix but just directly enter 4-5-1-2. The microprocessor will accept this sequence and interpret it as code 1-2 in memory slot 45. You test the code by reentering 4-5-1-2 and the door opens because the sequence includes the real code, 1-2. Later it will be noticed that the door is opening on 1-2 as this is such a simple sequence that it will be entered. When you have any evidence that unknown codes (particularly short ones) are in the unit, it is best to erase all User codes and reprogram.

 

TOUCH SENSE BARS

DK-11 Specific: Entering the code does not unlock the door.


Note if the red LED on the Keypad Plate goes on after the code is entered. If it does then the system is functioning normally and you need to check the lock and lock wiring. If the LED flashes once quickly the lock is drawing to much current or you power supply is under rated for the system. If the LED does not go on then the code is not being accepted and you need to re-program the system. If this fails call the factory.

DK-26 and DK-16 Specific: This unit appears dead.


Check that power has been connected using a voltmeter on the CPU board to make sure that the correct voltage is present. If the voltage reads very low, the problem may be that a fail safe lock being controlled by the DK-26 is drawing too much current for the power supply. Remove the lock from the circuit. If this restores proper voltage and operation of the DK-26, you'll have to determine if the power supply is undersized or if there is a short circuit in the lock wiring which is pulling down the power supply. If the DK-26 is receiving specified voltage, briefly short terminal SRC to terminal REX. You should hear the relay click. This confirms that the CPU board is working but for some reason, it's not reading the keys. Make sure that the keypad cable is connected exactly as shown in instructions. Pay particular attention to the keypad white wire going into terminal WHT. If this wire is not connected, the keypad will appear to be dead. If the relay doesn't operate when SRC and REX are connected, the CPU board has either tripped one of its automatic fuses or has some major problem requiring replacement. The DK-26 employs three special type fuses called PolySwitches.
PolySwitches look like capacitors. When a PolySwitch goes into overload, it automatically adds a high resistance to the circuit which limits current flow to about 100mA, protecting the circuit. Each PolySwitch protects against a particular problem and you need to know how to determine if the PolySwitch has tripped and how to correct the problem and reset the PolySwitch.
PolySwitch #1 comes into play when you are powering the unit from an AC source connected to the AC input terminals. It protects against an internal short on the board. If you are powering the board with DC voltage into the DC input terminals, ignore PolySwitch #1.
PolySwitch #2 protects against an internal DC short circuit on the CPU board.
PolySwitch #3 protects against a short circuit in the keypad which can be caused by skinned keypad wires or mis-wiring the keypad cable into the CPU board terminals. PolySwitch #3 will also trip if there are short circuit problems with the SRC, REX, UCD and HCD terminals.
To check the PolySwitches, apply the probes of a voltmeter to both PolySwitch leads with the board powered. If you are checking PolySwitch #1, set your voltmeter to AC. Set it to DC for PolySwitches #2 and #3. In the normal condition, the PolySwitch will be conducting current so you will read less than one volt. A tripped PolySwitch acts as a high impedance resistor so you will read several volts across the PolySwitch leads. If none of the three PolySwitches have tripped but the properly powered board will not operate its relay when SRC and REX are briefly shorted together, call the factory.
If you find a tripped PolySwitch, you have reset it. Overload current through the PolySwitch trips it so that it clamps the current down to roughly 100mA. The PolySwitch will continue to clamp until all power is removed for about 5 seconds. It is not enough to correct the overload condition; you have to depower the board for 5 seconds and the PolySwitch will reset itself.
If PolySwitch #1 has tripped, visually inspect the four large diodes on the board to see if a loose wire has fallen on them to create a short circuit. If you do not find such a physical problem that can be easily corrected, the board should be replaced although you should be aware that it can be operated with no problems from a DC power supply connected into the DC input terminals.
If PolySwitch #2 has tripped, and you are using DC power, make sure your input polarity is correct. Reversing your input polarity will trip PolySwitch #2. Otherwise, look for any loose wires that could be creating a short circuit anywhere on the board. If you can't correct the fault that is tripping PolySwitch #2, the board must be replaced.
If PolySwitch #3 has tripped, the overload condition is in the keypad wiring or in terminals SRC, REX, UCD and HCD. Carefully make sure that all keypad wires are connected to the correct terminals. If they are, temporarily disconnect the keypad and attempt to reset PolySwitch #3 by de-powering the board for 5 seconds. Once the board has been re-powered, momentarily connect SRC to REX to see if the board will function (the lock control relay will operate). If the CPU board resumes function, reconnect the keypad. If PolySwitch #3 trips again, the keypad will need to be replaced. If the CPU board did not resume function, disconnect any wires on the SRC, REX, UCD and HCD terminals and attempt reset. If this does not restore function to the board, the board will need to be replaced.

DK-26 and DK-16 Specific: Keys do not operate but I hear a beep every five seconds.


This is a diagnostic feature which indicates that one of the keys is being read as down (always being pressed). In that condition, the CPU board will not be able to read any other keys. It can happen because of mechanical failure within the switch element, or keypad wires that are shorted to each other. The latter problem usually happens when insulation is scraped off some of the wires in the keypad cable as it's being pulled through the door frame. You may be able to restore operation by rapping on all the keys. If this works, however, it is likely only a temporary fix and you should be prepared to change the keypad. Next, check the wiring of the keypad cable into the board. If you don't see any problems, the keypad will need to be replaced but you can restore partial use, if you wish, while awaiting a replacement. Put the positive probe of a voltmeter on terminal WHT and successively apply the negative probe on terminals BLK, GRY, BRN, BGE, ORG, PNK, and VIO. "Good" terminals will read about 11 volts. Two terminals, however, will read about zero volts. Remove the wires from the two terminals which read zero volts. If you are wondering why a single down key does not create a single zero volt terminal read, you should understand that the keys are in a two of seven matrix so the one to one relationship doesn't hold. When you remove the two wires from the zero volt reading terminals, you will disable several keys. You will be able to determine which keys are working by pressing each key and seeing which ones are echoed by a beep and LED flash. You can then establish a temporary Hard code using only the active keys.

DK-26 and DK-16 Specific: The keypad does not beep and the LED does not flash when a key is pressed (no echo).


A key is failing to be read when it is pressed. This can happen because of mechanical failure within the switch element, or from a broken or mis-wired keypad wire. If, however, the problem is with a wire, more than one key will be "dead". If just one key is not being echoed, the problem is with the key itself. You can, of course, use the unit for all operations that don't require that particular key but you will want to replace the keypad for full operation.

DK-26 and DK-16 Specific: Unit won't accept programming.


If the problem occurs on initial installation, usually it's caused by misunderstanding the programming instructions. Read them again carefully. Be sure you're not waiting more than 5 seconds between hitting keys as if you are, the entry will be ignored. Finally note that if terminals SRC and UCD are connected, all User codes will be disabled. If terminals SRC and HCD are connected, the Hard code will be disabled.

DK-26 and DK-16 Specific: The door opens on a short code that wasn't programmed.


This can arise through an unnoticed programming error. Suppose you want to program 4-5-1-2. But when the unit is in program mode, you forget to put in the two digit memory slot prefix but just directly enter 4-5-1-2. The microprocessor will accept this sequence and interpret it as code 1-2 in memory slot 45. You test the code by reentering 4-5-1-2 and the door opens because the sequence includes the real code, 1-2. Later it will be noticed that the door is opening on 1-2 as this is such a simple sequence that it will be entered. When you have any evidence that unknown codes (particularly short ones) are in the unit, it is best to erase all User codes and reprogram.

 

SHEAR ALIGNING MAGNALOCK

DK-11 Specific: Entering the code does not unlock the door.


Note if the red LED on the Keypad Plate goes on after the code is entered. If it does then the system is functioning normally and you need to check the lock and lock wiring. If the LED flashes once quickly the lock is drawing to much current or you power supply is under rated for the system. If the LED does not go on then the code is not being accepted and you need to re-program the system. If this fails call the factory.

DK-26 and DK-16 Specific: This unit appears dead.


Check that power has been connected using a voltmeter on the CPU board to make sure that the correct voltage is present. If the voltage reads very low, the problem may be that a fail safe lock being controlled by the DK-26 is drawing too much current for the power supply. Remove the lock from the circuit. If this restores proper voltage and operation of the DK-26, you'll have to determine if the power supply is undersized or if there is a short circuit in the lock wiring which is pulling down the power supply. If the DK-26 is receiving specified voltage, briefly short terminal SRC to terminal REX. You should hear the relay click. This confirms that the CPU board is working but for some reason, it's not reading the keys. Make sure that the keypad cable is connected exactly as shown in instructions. Pay particular attention to the keypad white wire going into terminal WHT. If this wire is not connected, the keypad will appear to be dead. If the relay doesn't operate when SRC and REX are connected, the CPU board has either tripped one of its automatic fuses or has some major problem requiring replacement. The DK-26 employs three special type fuses called PolySwitches.
PolySwitches look like capacitors. When a PolySwitch goes into overload, it automatically adds a high resistance to the circuit which limits current flow to about 100mA, protecting the circuit. Each PolySwitch protects against a particular problem and you need to know how to determine if the PolySwitch has tripped and how to correct the problem and reset the PolySwitch.
PolySwitch #1 comes into play when you are powering the unit from an AC source connected to the AC input terminals. It protects against an internal short on the board. If you are powering the board with DC voltage into the DC input terminals, ignore PolySwitch #1.
PolySwitch #2 protects against an internal DC short circuit on the CPU board.
PolySwitch #3 protects against a short circuit in the keypad which can be caused by skinned keypad wires or mis-wiring the keypad cable into the CPU board terminals. PolySwitch #3 will also trip if there are short circuit problems with the SRC, REX, UCD and HCD terminals.
To check the PolySwitches, apply the probes of a voltmeter to both PolySwitch leads with the board powered. If you are checking PolySwitch #1, set your voltmeter to AC. Set it to DC for PolySwitches #2 and #3. In the normal condition, the PolySwitch will be conducting current so you will read less than one volt. A tripped PolySwitch acts as a high impedance resistor so you will read several volts across the PolySwitch leads. If none of the three PolySwitches have tripped but the properly powered board will not operate its relay when SRC and REX are briefly shorted together, call the factory.
If you find a tripped PolySwitch, you have reset it. Overload current through the PolySwitch trips it so that it clamps the current down to roughly 100mA. The PolySwitch will continue to clamp until all power is removed for about 5 seconds. It is not enough to correct the overload condition; you have to depower the board for 5 seconds and the PolySwitch will reset itself.
If PolySwitch #1 has tripped, visually inspect the four large diodes on the board to see if a loose wire has fallen on them to create a short circuit. If you do not find such a physical problem that can be easily corrected, the board should be replaced although you should be aware that it can be operated with no problems from a DC power supply connected into the DC input terminals.
If PolySwitch #2 has tripped, and you are using DC power, make sure your input polarity is correct. Reversing your input polarity will trip PolySwitch #2. Otherwise, look for any loose wires that could be creating a short circuit anywhere on the board. If you can't correct the fault that is tripping PolySwitch #2, the board must be replaced.
If PolySwitch #3 has tripped, the overload condition is in the keypad wiring or in terminals SRC, REX, UCD and HCD. Carefully make sure that all keypad wires are connected to the correct terminals. If they are, temporarily disconnect the keypad and attempt to reset PolySwitch #3 by de-powering the board for 5 seconds. Once the board has been re-powered, momentarily connect SRC to REX to see if the board will function (the lock control relay will operate). If the CPU board resumes function, reconnect the keypad. If PolySwitch #3 trips again, the keypad will need to be replaced. If the CPU board did not resume function, disconnect any wires on the SRC, REX, UCD and HCD terminals and attempt reset. If this does not restore function to the board, the board will need to be replaced.

DK-26 and DK-16 Specific: Keys do not operate but I hear a beep every five seconds.


This is a diagnostic feature which indicates that one of the keys is being read as down (always being pressed). In that condition, the CPU board will not be able to read any other keys. It can happen because of mechanical failure within the switch element, or keypad wires that are shorted to each other. The latter problem usually happens when insulation is scraped off some of the wires in the keypad cable as it's being pulled through the door frame. You may be able to restore operation by rapping on all the keys. If this works, however, it is likely only a temporary fix and you should be prepared to change the keypad. Next, check the wiring of the keypad cable into the board. If you don't see any problems, the keypad will need to be replaced but you can restore partial use, if you wish, while awaiting a replacement. Put the positive probe of a voltmeter on terminal WHT and successively apply the negative probe on terminals BLK, GRY, BRN, BGE, ORG, PNK, and VIO. "Good" terminals will read about 11 volts. Two terminals, however, will read about zero volts. Remove the wires from the two terminals which read zero volts. If you are wondering why a single down key does not create a single zero volt terminal read, you should understand that the keys are in a two of seven matrix so the one to one relationship doesn't hold. When you remove the two wires from the zero volt reading terminals, you will disable several keys. You will be able to determine which keys are working by pressing each key and seeing which ones are echoed by a beep and LED flash. You can then establish a temporary Hard code using only the active keys.

DK-26 and DK-16 Specific: The keypad does not beep and the LED does not flash when a key is pressed (no echo).


A key is failing to be read when it is pressed. This can happen because of mechanical failure within the switch element, or from a broken or mis-wired keypad wire. If, however, the problem is with a wire, more than one key will be "dead". If just one key is not being echoed, the problem is with the key itself. You can, of course, use the unit for all operations that don't require that particular key but you will want to replace the keypad for full operation.

DK-26 and DK-16 Specific: Unit won't accept programming.


If the problem occurs on initial installation, usually it's caused by misunderstanding the programming instructions. Read them again carefully. Be sure you're not waiting more than 5 seconds between hitting keys as if you are, the entry will be ignored. Finally note that if terminals SRC and UCD are connected, all User codes will be disabled. If terminals SRC and HCD are connected, the Hard code will be disabled.

DK-26 and DK-16 Specific: The door opens on a short code that wasn't programmed.


This can arise through an unnoticed programming error. Suppose you want to program 4-5-1-2. But when the unit is in program mode, you forget to put in the two digit memory slot prefix but just directly enter 4-5-1-2. The microprocessor will accept this sequence and interpret it as code 1-2 in memory slot 45. You test the code by reentering 4-5-1-2 and the door opens because the sequence includes the real code, 1-2. Later it will be noticed that the door is opening on 1-2 as this is such a simple sequence that it will be entered. When you have any evidence that unknown codes (particularly short ones) are in the unit, it is best to erase all User codes and reprogram.

 

BPS SERIES POWER SUPPLIES

DK-11 Specific: Entering the code does not unlock the door.


Note if the red LED on the Keypad Plate goes on after the code is entered. If it does then the system is functioning normally and you need to check the lock and lock wiring. If the LED flashes once quickly the lock is drawing to much current or you power supply is under rated for the system. If the LED does not go on then the code is not being accepted and you need to re-program the system. If this fails call the factory.

DK-26 and DK-16 Specific: This unit appears dead.


Check that power has been connected using a voltmeter on the CPU board to make sure that the correct voltage is present. If the voltage reads very low, the problem may be that a fail safe lock being controlled by the DK-26 is drawing too much current for the power supply. Remove the lock from the circuit. If this restores proper voltage and operation of the DK-26, you'll have to determine if the power supply is undersized or if there is a short circuit in the lock wiring which is pulling down the power supply. If the DK-26 is receiving specified voltage, briefly short terminal SRC to terminal REX. You should hear the relay click. This confirms that the CPU board is working but for some reason, it's not reading the keys. Make sure that the keypad cable is connected exactly as shown in instructions. Pay particular attention to the keypad white wire going into terminal WHT. If this wire is not connected, the keypad will appear to be dead. If the relay doesn't operate when SRC and REX are connected, the CPU board has either tripped one of its automatic fuses or has some major problem requiring replacement. The DK-26 employs three special type fuses called PolySwitches.
PolySwitches look like capacitors. When a PolySwitch goes into overload, it automatically adds a high resistance to the circuit which limits current flow to about 100mA, protecting the circuit. Each PolySwitch protects against a particular problem and you need to know how to determine if the PolySwitch has tripped and how to correct the problem and reset the PolySwitch.
PolySwitch #1 comes into play when you are powering the unit from an AC source connected to the AC input terminals. It protects against an internal short on the board. If you are powering the board with DC voltage into the DC input terminals, ignore PolySwitch #1.
PolySwitch #2 protects against an internal DC short circuit on the CPU board.
PolySwitch #3 protects against a short circuit in the keypad which can be caused by skinned keypad wires or mis-wiring the keypad cable into the CPU board terminals. PolySwitch #3 will also trip if there are short circuit problems with the SRC, REX, UCD and HCD terminals.
To check the PolySwitches, apply the probes of a voltmeter to both PolySwitch leads with the board powered. If you are checking PolySwitch #1, set your voltmeter to AC. Set it to DC for PolySwitches #2 and #3. In the normal condition, the PolySwitch will be conducting current so you will read less than one volt. A tripped PolySwitch acts as a high impedance resistor so you will read several volts across the PolySwitch leads. If none of the three PolySwitches have tripped but the properly powered board will not operate its relay when SRC and REX are briefly shorted together, call the factory.
If you find a tripped PolySwitch, you have reset it. Overload current through the PolySwitch trips it so that it clamps the current down to roughly 100mA. The PolySwitch will continue to clamp until all power is removed for about 5 seconds. It is not enough to correct the overload condition; you have to depower the board for 5 seconds and the PolySwitch will reset itself.
If PolySwitch #1 has tripped, visually inspect the four large diodes on the board to see if a loose wire has fallen on them to create a short circuit. If you do not find such a physical problem that can be easily corrected, the board should be replaced although you should be aware that it can be operated with no problems from a DC power supply connected into the DC input terminals.
If PolySwitch #2 has tripped, and you are using DC power, make sure your input polarity is correct. Reversing your input polarity will trip PolySwitch #2. Otherwise, look for any loose wires that could be creating a short circuit anywhere on the board. If you can't correct the fault that is tripping PolySwitch #2, the board must be replaced.
If PolySwitch #3 has tripped, the overload condition is in the keypad wiring or in terminals SRC, REX, UCD and HCD. Carefully make sure that all keypad wires are connected to the correct terminals. If they are, temporarily disconnect the keypad and attempt to reset PolySwitch #3 by de-powering the board for 5 seconds. Once the board has been re-powered, momentarily connect SRC to REX to see if the board will function (the lock control relay will operate). If the CPU board resumes function, reconnect the keypad. If PolySwitch #3 trips again, the keypad will need to be replaced. If the CPU board did not resume function, disconnect any wires on the SRC, REX, UCD and HCD terminals and attempt reset. If this does not restore function to the board, the board will need to be replaced.

DK-26 and DK-16 Specific: Keys do not operate but I hear a beep every five seconds.


This is a diagnostic feature which indicates that one of the keys is being read as down (always being pressed). In that condition, the CPU board will not be able to read any other keys. It can happen because of mechanical failure within the switch element, or keypad wires that are shorted to each other. The latter problem usually happens when insulation is scraped off some of the wires in the keypad cable as it's being pulled through the door frame. You may be able to restore operation by rapping on all the keys. If this works, however, it is likely only a temporary fix and you should be prepared to change the keypad. Next, check the wiring of the keypad cable into the board. If you don't see any problems, the keypad will need to be replaced but you can restore partial use, if you wish, while awaiting a replacement. Put the positive probe of a voltmeter on terminal WHT and successively apply the negative probe on terminals BLK, GRY, BRN, BGE, ORG, PNK, and VIO. "Good" terminals will read about 11 volts. Two terminals, however, will read about zero volts. Remove the wires from the two terminals which read zero volts. If you are wondering why a single down key does not create a single zero volt terminal read, you should understand that the keys are in a two of seven matrix so the one to one relationship doesn't hold. When you remove the two wires from the zero volt reading terminals, you will disable several keys. You will be able to determine which keys are working by pressing each key and seeing which ones are echoed by a beep and LED flash. You can then establish a temporary Hard code using only the active keys.

DK-26 and DK-16 Specific: The keypad does not beep and the LED does not flash when a key is pressed (no echo).


A key is failing to be read when it is pressed. This can happen because of mechanical failure within the switch element, or from a broken or mis-wired keypad wire. If, however, the problem is with a wire, more than one key will be "dead". If just one key is not being echoed, the problem is with the key itself. You can, of course, use the unit for all operations that don't require that particular key but you will want to replace the keypad for full operation.

DK-26 and DK-16 Specific: Unit won't accept programming.


If the problem occurs on initial installation, usually it's caused by misunderstanding the programming instructions. Read them again carefully. Be sure you're not waiting more than 5 seconds between hitting keys as if you are, the entry will be ignored. Finally note that if terminals SRC and UCD are connected, all User codes will be disabled. If terminals SRC and HCD are connected, the Hard code will be disabled.

DK-26 and DK-16 Specific: The door opens on a short code that wasn't programmed.


This can arise through an unnoticed programming error. Suppose you want to program 4-5-1-2. But when the unit is in program mode, you forget to put in the two digit memory slot prefix but just directly enter 4-5-1-2. The microprocessor will accept this sequence and interpret it as code 1-2 in memory slot 45. You test the code by reentering 4-5-1-2 and the door opens because the sequence includes the real code, 1-2. Later it will be noticed that the door is opening on 1-2 as this is such a simple sequence that it will be entered. When you have any evidence that unknown codes (particularly short ones) are in the unit, it is best to erase all User codes and reprogram.

 

DK SERIES KEYPADS

DK-11 Specific: Entering the code does not unlock the door.


Note if the red LED on the Keypad Plate goes on after the code is entered. If it does then the system is functioning normally and you need to check the lock and lock wiring. If the LED flashes once quickly the lock is drawing to much current or you power supply is under rated for the system. If the LED does not go on then the code is not being accepted and you need to re-program the system. If this fails call the factory.

DK-26 and DK-16 Specific: This unit appears dead.


Check that power has been connected using a voltmeter on the CPU board to make sure that the correct voltage is present. If the voltage reads very low, the problem may be that a fail safe lock being controlled by the DK-26 is drawing too much current for the power supply. Remove the lock from the circuit. If this restores proper voltage and operation of the DK-26, you'll have to determine if the power supply is undersized or if there is a short circuit in the lock wiring which is pulling down the power supply. If the DK-26 is receiving specified voltage, briefly short terminal SRC to terminal REX. You should hear the relay click. This confirms that the CPU board is working but for some reason, it's not reading the keys. Make sure that the keypad cable is connected exactly as shown in instructions. Pay particular attention to the keypad white wire going into terminal WHT. If this wire is not connected, the keypad will appear to be dead. If the relay doesn't operate when SRC and REX are connected, the CPU board has either tripped one of its automatic fuses or has some major problem requiring replacement. The DK-26 employs three special type fuses called PolySwitches.
PolySwitches look like capacitors. When a PolySwitch goes into overload, it automatically adds a high resistance to the circuit which limits current flow to about 100mA, protecting the circuit. Each PolySwitch protects against a particular problem and you need to know how to determine if the PolySwitch has tripped and how to correct the problem and reset the PolySwitch.
PolySwitch #1 comes into play when you are powering the unit from an AC source connected to the AC input terminals. It protects against an internal short on the board. If you are powering the board with DC voltage into the DC input terminals, ignore PolySwitch #1.
PolySwitch #2 protects against an internal DC short circuit on the CPU board.
PolySwitch #3 protects against a short circuit in the keypad which can be caused by skinned keypad wires or mis-wiring the keypad cable into the CPU board terminals. PolySwitch #3 will also trip if there are short circuit problems with the SRC, REX, UCD and HCD terminals.
To check the PolySwitches, apply the probes of a voltmeter to both PolySwitch leads with the board powered. If you are checking PolySwitch #1, set your voltmeter to AC. Set it to DC for PolySwitches #2 and #3. In the normal condition, the PolySwitch will be conducting current so you will read less than one volt. A tripped PolySwitch acts as a high impedance resistor so you will read several volts across the PolySwitch leads. If none of the three PolySwitches have tripped but the properly powered board will not operate its relay when SRC and REX are briefly shorted together, call the factory.
If you find a tripped PolySwitch, you have reset it. Overload current through the PolySwitch trips it so that it clamps the current down to roughly 100mA. The PolySwitch will continue to clamp until all power is removed for about 5 seconds. It is not enough to correct the overload condition; you have to depower the board for 5 seconds and the PolySwitch will reset itself.
If PolySwitch #1 has tripped, visually inspect the four large diodes on the board to see if a loose wire has fallen on them to create a short circuit. If you do not find such a physical problem that can be easily corrected, the board should be replaced although you should be aware that it can be operated with no problems from a DC power supply connected into the DC input terminals.
If PolySwitch #2 has tripped, and you are using DC power, make sure your input polarity is correct. Reversing your input polarity will trip PolySwitch #2. Otherwise, look for any loose wires that could be creating a short circuit anywhere on the board. If you can't correct the fault that is tripping PolySwitch #2, the board must be replaced.
If PolySwitch #3 has tripped, the overload condition is in the keypad wiring or in terminals SRC, REX, UCD and HCD. Carefully make sure that all keypad wires are connected to the correct terminals. If they are, temporarily disconnect the keypad and attempt to reset PolySwitch #3 by de-powering the board for 5 seconds. Once the board has been re-powered, momentarily connect SRC to REX to see if the board will function (the lock control relay will operate). If the CPU board resumes function, reconnect the keypad. If PolySwitch #3 trips again, the keypad will need to be replaced. If the CPU board did not resume function, disconnect any wires on the SRC, REX, UCD and HCD terminals and attempt reset. If this does not restore function to the board, the board will need to be replaced.

DK-26 and DK-16 Specific: Keys do not operate but I hear a beep every five seconds.


This is a diagnostic feature which indicates that one of the keys is being read as down (always being pressed). In that condition, the CPU board will not be able to read any other keys. It can happen because of mechanical failure within the switch element, or keypad wires that are shorted to each other. The latter problem usually happens when insulation is scraped off some of the wires in the keypad cable as it's being pulled through the door frame. You may be able to restore operation by rapping on all the keys. If this works, however, it is likely only a temporary fix and you should be prepared to change the keypad. Next, check the wiring of the keypad cable into the board. If you don't see any problems, the keypad will need to be replaced but you can restore partial use, if you wish, while awaiting a replacement. Put the positive probe of a voltmeter on terminal WHT and successively apply the negative probe on terminals BLK, GRY, BRN, BGE, ORG, PNK, and VIO. "Good" terminals will read about 11 volts. Two terminals, however, will read about zero volts. Remove the wires from the two terminals which read zero volts. If you are wondering why a single down key does not create a single zero volt terminal read, you should understand that the keys are in a two of seven matrix so the one to one relationship doesn't hold. When you remove the two wires from the zero volt reading terminals, you will disable several keys. You will be able to determine which keys are working by pressing each key and seeing which ones are echoed by a beep and LED flash. You can then establish a temporary Hard code using only the active keys.

DK-26 and DK-16 Specific: The keypad does not beep and the LED does not flash when a key is pressed (no echo).


A key is failing to be read when it is pressed. This can happen because of mechanical failure within the switch element, or from a broken or mis-wired keypad wire. If, however, the problem is with a wire, more than one key will be "dead". If just one key is not being echoed, the problem is with the key itself. You can, of course, use the unit for all operations that don't require that particular key but you will want to replace the keypad for full operation.

DK-26 and DK-16 Specific: Unit won't accept programming.


If the problem occurs on initial installation, usually it's caused by misunderstanding the programming instructions. Read them again carefully. Be sure you're not waiting more than 5 seconds between hitting keys as if you are, the entry will be ignored. Finally note that if terminals SRC and UCD are connected, all User codes will be disabled. If terminals SRC and HCD are connected, the Hard code will be disabled.

DK-26 and DK-16 Specific: The door opens on a short code that wasn't programmed.


This can arise through an unnoticed programming error. Suppose you want to program 4-5-1-2. But when the unit is in program mode, you forget to put in the two digit memory slot prefix but just directly enter 4-5-1-2. The microprocessor will accept this sequence and interpret it as code 1-2 in memory slot 45. You test the code by reentering 4-5-1-2 and the door opens because the sequence includes the real code, 1-2. Later it will be noticed that the door is opening on 1-2 as this is such a simple sequence that it will be entered. When you have any evidence that unknown codes (particularly short ones) are in the unit, it is best to erase all User codes and reprogram.

 

DIGITAL ENTRY SYSTEMS

DK-11 Specific: Entering the code does not unlock the door.


Note if the red LED on the Keypad Plate goes on after the code is entered. If it does then the system is functioning normally and you need to check the lock and lock wiring. If the LED flashes once quickly the lock is drawing to much current or you power supply is under rated for the system. If the LED does not go on then the code is not being accepted and you need to re-program the system. If this fails call the factory.

DK-26 and DK-16 Specific: This unit appears dead.


Check that power has been connected using a voltmeter on the CPU board to make sure that the correct voltage is present. If the voltage reads very low, the problem may be that a fail safe lock being controlled by the DK-26 is drawing too much current for the power supply. Remove the lock from the circuit. If this restores proper voltage and operation of the DK-26, you'll have to determine if the power supply is undersized or if there is a short circuit in the lock wiring which is pulling down the power supply. If the DK-26 is receiving specified voltage, briefly short terminal SRC to terminal REX. You should hear the relay click. This confirms that the CPU board is working but for some reason, it's not reading the keys. Make sure that the keypad cable is connected exactly as shown in instructions. Pay particular attention to the keypad white wire going into terminal WHT. If this wire is not connected, the keypad will appear to be dead. If the relay doesn't operate when SRC and REX are connected, the CPU board has either tripped one of its automatic fuses or has some major problem requiring replacement. The DK-26 employs three special type fuses called PolySwitches.
PolySwitches look like capacitors. When a PolySwitch goes into overload, it automatically adds a high resistance to the circuit which limits current flow to about 100mA, protecting the circuit. Each PolySwitch protects against a particular problem and you need to know how to determine if the PolySwitch has tripped and how to correct the problem and reset the PolySwitch.
PolySwitch #1 comes into play when you are powering the unit from an AC source connected to the AC input terminals. It protects against an internal short on the board. If you are powering the board with DC voltage into the DC input terminals, ignore PolySwitch #1.
PolySwitch #2 protects against an internal DC short circuit on the CPU board.
PolySwitch #3 protects against a short circuit in the keypad which can be caused by skinned keypad wires or mis-wiring the keypad cable into the CPU board terminals. PolySwitch #3 will also trip if there are short circuit problems with the SRC, REX, UCD and HCD terminals.
To check the PolySwitches, apply the probes of a voltmeter to both PolySwitch leads with the board powered. If you are checking PolySwitch #1, set your voltmeter to AC. Set it to DC for PolySwitches #2 and #3. In the normal condition, the PolySwitch will be conducting current so you will read less than one volt. A tripped PolySwitch acts as a high impedance resistor so you will read several volts across the PolySwitch leads. If none of the three PolySwitches have tripped but the properly powered board will not operate its relay when SRC and REX are briefly shorted together, call the factory.
If you find a tripped PolySwitch, you have reset it. Overload current through the PolySwitch trips it so that it clamps the current down to roughly 100mA. The PolySwitch will continue to clamp until all power is removed for about 5 seconds. It is not enough to correct the overload condition; you have to depower the board for 5 seconds and the PolySwitch will reset itself.
If PolySwitch #1 has tripped, visually inspect the four large diodes on the board to see if a loose wire has fallen on them to create a short circuit. If you do not find such a physical problem that can be easily corrected, the board should be replaced although you should be aware that it can be operated with no problems from a DC power supply connected into the DC input terminals.
If PolySwitch #2 has tripped, and you are using DC power, make sure your input polarity is correct. Reversing your input polarity will trip PolySwitch #2. Otherwise, look for any loose wires that could be creating a short circuit anywhere on the board. If you can't correct the fault that is tripping PolySwitch #2, the board must be replaced.
If PolySwitch #3 has tripped, the overload condition is in the keypad wiring or in terminals SRC, REX, UCD and HCD. Carefully make sure that all keypad wires are connected to the correct terminals. If they are, temporarily disconnect the keypad and attempt to reset PolySwitch #3 by de-powering the board for 5 seconds. Once the board has been re-powered, momentarily connect SRC to REX to see if the board will function (the lock control relay will operate). If the CPU board resumes function, reconnect the keypad. If PolySwitch #3 trips again, the keypad will need to be replaced. If the CPU board did not resume function, disconnect any wires on the SRC, REX, UCD and HCD terminals and attempt reset. If this does not restore function to the board, the board will need to be replaced.

DK-26 and DK-16 Specific: Keys do not operate but I hear a beep every five seconds.


This is a diagnostic feature which indicates that one of the keys is being read as down (always being pressed). In that condition, the CPU board will not be able to read any other keys. It can happen because of mechanical failure within the switch element, or keypad wires that are shorted to each other. The latter problem usually happens when insulation is scraped off some of the wires in the keypad cable as it's being pulled through the door frame. You may be able to restore operation by rapping on all the keys. If this works, however, it is likely only a temporary fix and you should be prepared to change the keypad. Next, check the wiring of the keypad cable into the board. If you don't see any problems, the keypad will need to be replaced but you can restore partial use, if you wish, while awaiting a replacement. Put the positive probe of a voltmeter on terminal WHT and successively apply the negative probe on terminals BLK, GRY, BRN, BGE, ORG, PNK, and VIO. "Good" terminals will read about 11 volts. Two terminals, however, will read about zero volts. Remove the wires from the two terminals which read zero volts. If you are wondering why a single down key does not create a single zero volt terminal read, you should understand that the keys are in a two of seven matrix so the one to one relationship doesn't hold. When you remove the two wires from the zero volt reading terminals, you will disable several keys. You will be able to determine which keys are working by pressing each key and seeing which ones are echoed by a beep and LED flash. You can then establish a temporary Hard code using only the active keys.

DK-26 and DK-16 Specific: The keypad does not beep and the LED does not flash when a key is pressed (no echo).


A key is failing to be read when it is pressed. This can happen because of mechanical failure within the switch element, or from a broken or mis-wired keypad wire. If, however, the problem is with a wire, more than one key will be "dead". If just one key is not being echoed, the problem is with the key itself. You can, of course, use the unit for all operations that don't require that particular key but you will want to replace the keypad for full operation.

DK-26 and DK-16 Specific: Unit won't accept programming.


If the problem occurs on initial installation, usually it's caused by misunderstanding the programming instructions. Read them again carefully. Be sure you're not waiting more than 5 seconds between hitting keys as if you are, the entry will be ignored. Finally note that if terminals SRC and UCD are connected, all User codes will be disabled. If terminals SRC and HCD are connected, the Hard code will be disabled.

DK-26 and DK-16 Specific: The door opens on a short code that wasn't programmed.


This can arise through an unnoticed programming error. Suppose you want to program 4-5-1-2. But when the unit is in program mode, you forget to put in the two digit memory slot prefix but just directly enter 4-5-1-2. The microprocessor will accept this sequence and interpret it as code 1-2 in memory slot 45. You test the code by reentering 4-5-1-2 and the door opens because the sequence includes the real code, 1-2. Later it will be noticed that the door is opening on 1-2 as this is such a simple sequence that it will be entered. When you have any evidence that unknown codes (particularly short ones) are in the unit, it is best to erase all User codes and reprogram.

 

EXIT CONTROL/PUSH BUTTONS - CABINET LOCKS - LATCH/BOLT MONITORS - MAGNALOCKS - EXIT DELAY - KEYSWITCHES - LOCK CONTROL PANELS

DK-11 Specific: Entering the code does not unlock the door.


Note if the red LED on the Keypad Plate goes on after the code is entered. If it does then the system is functioning normally and you need to check the lock and lock wiring. If the LED flashes once quickly the lock is drawing to much current or you power supply is under rated for the system. If the LED does not go on then the code is not being accepted and you need to re-program the system. If this fails call the factory.

DK-26 and DK-16 Specific: This unit appears dead.


Check that power has been connected using a voltmeter on the CPU board to make sure that the correct voltage is present. If the voltage reads very low, the problem may be that a fail safe lock being controlled by the DK-26 is drawing too much current for the power supply. Remove the lock from the circuit. If this restores proper voltage and operation of the DK-26, you'll have to determine if the power supply is undersized or if there is a short circuit in the lock wiring which is pulling down the power supply. If the DK-26 is receiving specified voltage, briefly short terminal SRC to terminal REX. You should hear the relay click. This confirms that the CPU board is working but for some reason, it's not reading the keys. Make sure that the keypad cable is connected exactly as shown in instructions. Pay particular attention to the keypad white wire going into terminal WHT. If this wire is not connected, the keypad will appear to be dead. If the relay doesn't operate when SRC and REX are connected, the CPU board has either tripped one of its automatic fuses or has some major problem requiring replacement. The DK-26 employs three special type fuses called PolySwitches.
PolySwitches look like capacitors. When a PolySwitch goes into overload, it automatically adds a high resistance to the circuit which limits current flow to about 100mA, protecting the circuit. Each PolySwitch protects against a particular problem and you need to know how to determine if the PolySwitch has tripped and how to correct the problem and reset the PolySwitch.
PolySwitch #1 comes into play when you are powering the unit from an AC source connected to the AC input terminals. It protects against an internal short on the board. If you are powering the board with DC voltage into the DC input terminals, ignore PolySwitch #1.
PolySwitch #2 protects against an internal DC short circuit on the CPU board.
PolySwitch #3 protects against a short circuit in the keypad which can be caused by skinned keypad wires or mis-wiring the keypad cable into the CPU board terminals. PolySwitch #3 will also trip if there are short circuit problems with the SRC, REX, UCD and HCD terminals.
To check the PolySwitches, apply the probes of a voltmeter to both PolySwitch leads with the board powered. If you are checking PolySwitch #1, set your voltmeter to AC. Set it to DC for PolySwitches #2 and #3. In the normal condition, the PolySwitch will be conducting current so you will read less than one volt. A tripped PolySwitch acts as a high impedance resistor so you will read several volts across the PolySwitch leads. If none of the three PolySwitches have tripped but the properly powered board will not operate its relay when SRC and REX are briefly shorted together, call the factory.
If you find a tripped PolySwitch, you have reset it. Overload current through the PolySwitch trips it so that it clamps the current down to roughly 100mA. The PolySwitch will continue to clamp until all power is removed for about 5 seconds. It is not enough to correct the overload condition; you have to depower the board for 5 seconds and the PolySwitch will reset itself.
If PolySwitch #1 has tripped, visually inspect the four large diodes on the board to see if a loose wire has fallen on them to create a short circuit. If you do not find such a physical problem that can be easily corrected, the board should be replaced although you should be aware that it can be operated with no problems from a DC power supply connected into the DC input terminals.
If PolySwitch #2 has tripped, and you are using DC power, make sure your input polarity is correct. Reversing your input polarity will trip PolySwitch #2. Otherwise, look for any loose wires that could be creating a short circuit anywhere on the board. If you can't correct the fault that is tripping PolySwitch #2, the board must be replaced.
If PolySwitch #3 has tripped, the overload condition is in the keypad wiring or in terminals SRC, REX, UCD and HCD. Carefully make sure that all keypad wires are connected to the correct terminals. If they are, temporarily disconnect the keypad and attempt to reset PolySwitch #3 by de-powering the board for 5 seconds. Once the board has been re-powered, momentarily connect SRC to REX to see if the board will function (the lock control relay will operate). If the CPU board resumes function, reconnect the keypad. If PolySwitch #3 trips again, the keypad will need to be replaced. If the CPU board did not resume function, disconnect any wires on the SRC, REX, UCD and HCD terminals and attempt reset. If this does not restore function to the board, the board will need to be replaced.

DK-26 and DK-16 Specific: Keys do not operate but I hear a beep every five seconds.


This is a diagnostic feature which indicates that one of the keys is being read as down (always being pressed). In that condition, the CPU board will not be able to read any other keys. It can happen because of mechanical failure within the switch element, or keypad wires that are shorted to each other. The latter problem usually happens when insulation is scraped off some of the wires in the keypad cable as it's being pulled through the door frame. You may be able to restore operation by rapping on all the keys. If this works, however, it is likely only a temporary fix and you should be prepared to change the keypad. Next, check the wiring of the keypad cable into the board. If you don't see any problems, the keypad will need to be replaced but you can restore partial use, if you wish, while awaiting a replacement. Put the positive probe of a voltmeter on terminal WHT and successively apply the negative probe on terminals BLK, GRY, BRN, BGE, ORG, PNK, and VIO. "Good" terminals will read about 11 volts. Two terminals, however, will read about zero volts. Remove the wires from the two terminals which read zero volts. If you are wondering why a single down key does not create a single zero volt terminal read, you should understand that the keys are in a two of seven matrix so the one to one relationship doesn't hold. When you remove the two wires from the zero volt reading terminals, you will disable several keys. You will be able to determine which keys are working by pressing each key and seeing which ones are echoed by a beep and LED flash. You can then establish a temporary Hard code using only the active keys.

DK-26 and DK-16 Specific: The keypad does not beep and the LED does not flash when a key is pressed (no echo).


A key is failing to be read when it is pressed. This can happen because of mechanical failure within the switch element, or from a broken or mis-wired keypad wire. If, however, the problem is with a wire, more than one key will be "dead". If just one key is not being echoed, the problem is with the key itself. You can, of course, use the unit for all operations that don't require that particular key but you will want to replace the keypad for full operation.

DK-26 and DK-16 Specific: Unit won't accept programming.


If the problem occurs on initial installation, usually it's caused by misunderstanding the programming instructions. Read them again carefully. Be sure you're not waiting more than 5 seconds between hitting keys as if you are, the entry will be ignored. Finally note that if terminals SRC and UCD are connected, all User codes will be disabled. If terminals SRC and HCD are connected, the Hard code will be disabled.

DK-26 and DK-16 Specific: The door opens on a short code that wasn't programmed.


This can arise through an unnoticed programming error. Suppose you want to program 4-5-1-2. But when the unit is in program mode, you forget to put in the two digit memory slot prefix but just directly enter 4-5-1-2. The microprocessor will accept this sequence and interpret it as code 1-2 in memory slot 45. You test the code by reentering 4-5-1-2 and the door opens because the sequence includes the real code, 1-2. Later it will be noticed that the door is opening on 1-2 as this is such a simple sequence that it will be entered. When you have any evidence that unknown codes (particularly short ones) are in the unit, it is best to erase all User codes and reprogram.

 

MAXIMUM SECURITY SWITCHES - MOTION DETECTOR EXIT PACKAGE - POWER SOURCES

DK-11 Specific: Entering the code does not unlock the door.


Note if the red LED on the Keypad Plate goes on after the code is entered. If it does then the system is functioning normally and you need to check the lock and lock wiring. If the LED flashes once quickly the lock is drawing to much current or you power supply is under rated for the system. If the LED does not go on then the code is not being accepted and you need to re-program the system. If this fails call the factory.

DK-26 and DK-16 Specific: This unit appears dead.


Check that power has been connected using a voltmeter on the CPU board to make sure that the correct voltage is present. If the voltage reads very low, the problem may be that a fail safe lock being controlled by the DK-26 is drawing too much current for the power supply. Remove the lock from the circuit. If this restores proper voltage and operation of the DK-26, you'll have to determine if the power supply is undersized or if there is a short circuit in the lock wiring which is pulling down the power supply. If the DK-26 is receiving specified voltage, briefly short terminal SRC to terminal REX. You should hear the relay click. This confirms that the CPU board is working but for some reason, it's not reading the keys. Make sure that the keypad cable is connected exactly as shown in instructions. Pay particular attention to the keypad white wire going into terminal WHT. If this wire is not connected, the keypad will appear to be dead. If the relay doesn't operate when SRC and REX are connected, the CPU board has either tripped one of its automatic fuses or has some major problem requiring replacement. The DK-26 employs three special type fuses called PolySwitches.
PolySwitches look like capacitors. When a PolySwitch goes into overload, it automatically adds a high resistance to the circuit which limits current flow to about 100mA, protecting the circuit. Each PolySwitch protects against a particular problem and you need to know how to determine if the PolySwitch has tripped and how to correct the problem and reset the PolySwitch.
PolySwitch #1 comes into play when you are powering the unit from an AC source connected to the AC input terminals. It protects against an internal short on the board. If you are powering the board with DC voltage into the DC input terminals, ignore PolySwitch #1.
PolySwitch #2 protects against an internal DC short circuit on the CPU board.
PolySwitch #3 protects against a short circuit in the keypad which can be caused by skinned keypad wires or mis-wiring the keypad cable into the CPU board terminals. PolySwitch #3 will also trip if there are short circuit problems with the SRC, REX, UCD and HCD terminals.
To check the PolySwitches, apply the probes of a voltmeter to both PolySwitch leads with the board powered. If you are checking PolySwitch #1, set your voltmeter to AC. Set it to DC for PolySwitches #2 and #3. In the normal condition, the PolySwitch will be conducting current so you will read less than one volt. A tripped PolySwitch acts as a high impedance resistor so you will read several volts across the PolySwitch leads. If none of the three PolySwitches have tripped but the properly powered board will not operate its relay when SRC and REX are briefly shorted together, call the factory.
If you find a tripped PolySwitch, you have reset it. Overload current through the PolySwitch trips it so that it clamps the current down to roughly 100mA. The PolySwitch will continue to clamp until all power is removed for about 5 seconds. It is not enough to correct the overload condition; you have to depower the board for 5 seconds and the PolySwitch will reset itself.
If PolySwitch #1 has tripped, visually inspect the four large diodes on the board to see if a loose wire has fallen on them to create a short circuit. If you do not find such a physical problem that can be easily corrected, the board should be replaced although you should be aware that it can be operated with no problems from a DC power supply connected into the DC input terminals.
If PolySwitch #2 has tripped, and you are using DC power, make sure your input polarity is correct. Reversing your input polarity will trip PolySwitch #2. Otherwise, look for any loose wires that could be creating a short circuit anywhere on the board. If you can't correct the fault that is tripping PolySwitch #2, the board must be replaced.
If PolySwitch #3 has tripped, the overload condition is in the keypad wiring or in terminals SRC, REX, UCD and HCD. Carefully make sure that all keypad wires are connected to the correct terminals. If they are, temporarily disconnect the keypad and attempt to reset PolySwitch #3 by de-powering the board for 5 seconds. Once the board has been re-powered, momentarily connect SRC to REX to see if the board will function (the lock control relay will operate). If the CPU board resumes function, reconnect the keypad. If PolySwitch #3 trips again, the keypad will need to be replaced. If the CPU board did not resume function, disconnect any wires on the SRC, REX, UCD and HCD terminals and attempt reset. If this does not restore function to the board, the board will need to be replaced.

DK-26 and DK-16 Specific: Keys do not operate but I hear a beep every five seconds.


This is a diagnostic feature which indicates that one of the keys is being read as down (always being pressed). In that condition, the CPU board will not be able to read any other keys. It can happen because of mechanical failure within the switch element, or keypad wires that are shorted to each other. The latter problem usually happens when insulation is scraped off some of the wires in the keypad cable as it's being pulled through the door frame. You may be able to restore operation by rapping on all the keys. If this works, however, it is likely only a temporary fix and you should be prepared to change the keypad. Next, check the wiring of the keypad cable into the board. If you don't see any problems, the keypad will need to be replaced but you can restore partial use, if you wish, while awaiting a replacement. Put the positive probe of a voltmeter on terminal WHT and successively apply the negative probe on terminals BLK, GRY, BRN, BGE, ORG, PNK, and VIO. "Good" terminals will read about 11 volts. Two terminals, however, will read about zero volts. Remove the wires from the two terminals which read zero volts. If you are wondering why a single down key does not create a single zero volt terminal read, you should understand that the keys are in a two of seven matrix so the one to one relationship doesn't hold. When you remove the two wires from the zero volt reading terminals, you will disable several keys. You will be able to determine which keys are working by pressing each key and seeing which ones are echoed by a beep and LED flash. You can then establish a temporary Hard code using only the active keys.

DK-26 and DK-16 Specific: The keypad does not beep and the LED does not flash when a key is pressed (no echo).


A key is failing to be read when it is pressed. This can happen because of mechanical failure within the switch element, or from a broken or mis-wired keypad wire. If, however, the problem is with a wire, more than one key will be "dead". If just one key is not being echoed, the problem is with the key itself. You can, of course, use the unit for all operations that don't require that particular key but you will want to replace the keypad for full operation.

DK-26 and DK-16 Specific: Unit won't accept programming.


If the problem occurs on initial installation, usually it's caused by misunderstanding the programming instructions. Read them again carefully. Be sure you're not waiting more than 5 seconds between hitting keys as if you are, the entry will be ignored. Finally note that if terminals SRC and UCD are connected, all User codes will be disabled. If terminals SRC and HCD are connected, the Hard code will be disabled.

DK-26 and DK-16 Specific: The door opens on a short code that wasn't programmed.


This can arise through an unnoticed programming error. Suppose you want to program 4-5-1-2. But when the unit is in program mode, you forget to put in the two digit memory slot prefix but just directly enter 4-5-1-2. The microprocessor will accept this sequence and interpret it as code 1-2 in memory slot 45. You test the code by reentering 4-5-1-2 and the door opens because the sequence includes the real code, 1-2. Later it will be noticed that the door is opening on 1-2 as this is such a simple sequence that it will be entered. When you have any evidence that unknown codes (particularly short ones) are in the unit, it is best to erase all User codes and reprogram.

 

UNLATCH SERIES DOOR STRIKES

DK-11 Specific: Entering the code does not unlock the door.


Note if the red LED on the Keypad Plate goes on after the code is entered. If it does then the system is functioning normally and you need to check the lock and lock wiring. If the LED flashes once quickly the lock is drawing to much current or you power supply is under rated for the system. If the LED does not go on then the code is not being accepted and you need to re-program the system. If this fails call the factory.

DK-26 and DK-16 Specific: This unit appears dead.


Check that power has been connected using a voltmeter on the CPU board to make sure that the correct voltage is present. If the voltage reads very low, the problem may be that a fail safe lock being controlled by the DK-26 is drawing too much current for the power supply. Remove the lock from the circuit. If this restores proper voltage and operation of the DK-26, you'll have to determine if the power supply is undersized or if there is a short circuit in the lock wiring which is pulling down the power supply. If the DK-26 is receiving specified voltage, briefly short terminal SRC to terminal REX. You should hear the relay click. This confirms that the CPU board is working but for some reason, it's not reading the keys. Make sure that the keypad cable is connected exactly as shown in instructions. Pay particular attention to the keypad white wire going into terminal WHT. If this wire is not connected, the keypad will appear to be dead. If the relay doesn't operate when SRC and REX are connected, the CPU board has either tripped one of its automatic fuses or has some major problem requiring replacement. The DK-26 employs three special type fuses called PolySwitches.
PolySwitches look like capacitors. When a PolySwitch goes into overload, it automatically adds a high resistance to the circuit which limits current flow to about 100mA, protecting the circuit. Each PolySwitch protects against a particular problem and you need to know how to determine if the PolySwitch has tripped and how to correct the problem and reset the PolySwitch.
PolySwitch #1 comes into play when you are powering the unit from an AC source connected to the AC input terminals. It protects against an internal short on the board. If you are powering the board with DC voltage into the DC input terminals, ignore PolySwitch #1.
PolySwitch #2 protects against an internal DC short circuit on the CPU board.
PolySwitch #3 protects against a short circuit in the keypad which can be caused by skinned keypad wires or mis-wiring the keypad cable into the CPU board terminals. PolySwitch #3 will also trip if there are short circuit problems with the SRC, REX, UCD and HCD terminals.
To check the PolySwitches, apply the probes of a voltmeter to both PolySwitch leads with the board powered. If you are checking PolySwitch #1, set your voltmeter to AC. Set it to DC for PolySwitches #2 and #3. In the normal condition, the PolySwitch will be conducting current so you will read less than one volt. A tripped PolySwitch acts as a high impedance resistor so you will read several volts across the PolySwitch leads. If none of the three PolySwitches have tripped but the properly powered board will not operate its relay when SRC and REX are briefly shorted together, call the factory.
If you find a tripped PolySwitch, you have reset it. Overload current through the PolySwitch trips it so that it clamps the current down to roughly 100mA. The PolySwitch will continue to clamp until all power is removed for about 5 seconds. It is not enough to correct the overload condition; you have to depower the board for 5 seconds and the PolySwitch will reset itself.
If PolySwitch #1 has tripped, visually inspect the four large diodes on the board to see if a loose wire has fallen on them to create a short circuit. If you do not find such a physical problem that can be easily corrected, the board should be replaced although you should be aware that it can be operated with no problems from a DC power supply connected into the DC input terminals.
If PolySwitch #2 has tripped, and you are using DC power, make sure your input polarity is correct. Reversing your input polarity will trip PolySwitch #2. Otherwise, look for any loose wires that could be creating a short circuit anywhere on the board. If you can't correct the fault that is tripping PolySwitch #2, the board must be replaced.
If PolySwitch #3 has tripped, the overload condition is in the keypad wiring or in terminals SRC, REX, UCD and HCD. Carefully make sure that all keypad wires are connected to the correct terminals. If they are, temporarily disconnect the keypad and attempt to reset PolySwitch #3 by de-powering the board for 5 seconds. Once the board has been re-powered, momentarily connect SRC to REX to see if the board will function (the lock control relay will operate). If the CPU board resumes function, reconnect the keypad. If PolySwitch #3 trips again, the keypad will need to be replaced. If the CPU board did not resume function, disconnect any wires on the SRC, REX, UCD and HCD terminals and attempt reset. If this does not restore function to the board, the board will need to be replaced.

DK-26 and DK-16 Specific: Keys do not operate but I hear a beep every five seconds.


This is a diagnostic feature which indicates that one of the keys is being read as down (always being pressed). In that condition, the CPU board will not be able to read any other keys. It can happen because of mechanical failure within the switch element, or keypad wires that are shorted to each other. The latter problem usually happens when insulation is scraped off some of the wires in the keypad cable as it's being pulled through the door frame. You may be able to restore operation by rapping on all the keys. If this works, however, it is likely only a temporary fix and you should be prepared to change the keypad. Next, check the wiring of the keypad cable into the board. If you don't see any problems, the keypad will need to be replaced but you can restore partial use, if you wish, while awaiting a replacement. Put the positive probe of a voltmeter on terminal WHT and successively apply the negative probe on terminals BLK, GRY, BRN, BGE, ORG, PNK, and VIO. "Good" terminals will read about 11 volts. Two terminals, however, will read about zero volts. Remove the wires from the two terminals which read zero volts. If you are wondering why a single down key does not create a single zero volt terminal read, you should understand that the keys are in a two of seven matrix so the one to one relationship doesn't hold. When you remove the two wires from the zero volt reading terminals, you will disable several keys. You will be able to determine which keys are working by pressing each key and seeing which ones are echoed by a beep and LED flash. You can then establish a temporary Hard code using only the active keys.

DK-26 and DK-16 Specific: The keypad does not beep and the LED does not flash when a key is pressed (no echo).


A key is failing to be read when it is pressed. This can happen because of mechanical failure within the switch element, or from a broken or mis-wired keypad wire. If, however, the problem is with a wire, more than one key will be "dead". If just one key is not being echoed, the problem is with the key itself. You can, of course, use the unit for all operations that don't require that particular key but you will want to replace the keypad for full operation.

DK-26 and DK-16 Specific: Unit won't accept programming.


If the problem occurs on initial installation, usually it's caused by misunderstanding the programming instructions. Read them again carefully. Be sure you're not waiting more than 5 seconds between hitting keys as if you are, the entry will be ignored. Finally note that if terminals SRC and UCD are connected, all User codes will be disabled. If terminals SRC and HCD are connected, the Hard code will be disabled.

DK-26 and DK-16 Specific: The door opens on a short code that wasn't programmed.


This can arise through an unnoticed programming error. Suppose you want to program 4-5-1-2. But when the unit is in program mode, you forget to put in the two digit memory slot prefix but just directly enter 4-5-1-2. The microprocessor will accept this sequence and interpret it as code 1-2 in memory slot 45. You test the code by reentering 4-5-1-2 and the door opens because the sequence includes the real code, 1-2. Later it will be noticed that the door is opening on 1-2 as this is such a simple sequence that it will be entered. When you have any evidence that unknown codes (particularly short ones) are in the unit, it is best to erase all User codes and reprogram.